Almost Hilbertian Fields *

نویسندگان

  • HILBERTIAN FIELDS
  • Pierre Dèbes
  • Dan Haran
چکیده

This paper is devoted to some variants of the Hilbert specialization property. For example, the RG-hilbertian property (for a field K), which arose in connection with the Inverse Galois Problem, requires that the specialization property holds solely for extensions of K(T ) that are Galois and regular over K. We show that fields inductively obtained from a real hilbertian field by adjoining real p-th roots (p odd prime) are RG-hilbertian; some of these fields are not hilbertian. There are other variants of interest: the R-hilbertian property is obtained from the RG-hilbertian property by dropping the condition “Galois”, the mordellian property is that every non-trivial extension of K(T ) has infinitely many non-trivial specializations, etc. We investigate the connections existing between these properties. In the case of PAC fields we obtain pure Galois-theoretic characterizations. We use them to show that “mordellian” does not imply “hilbertian” and that every PAC R-hilbertian field is hilbertian.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large Normal Extensions of Hilbertian Fields

Let K be a countable separably Hilbertian field. Denote the absolute Galois group of K by G(K). For each σ ∈ (σ1, . . . , σe) ∈ G(K) let Ks[σ] be the maximal Galois extension of K which is fixed by σ1, . . . , σe. We prove that for almost all σ ∈ G(K) (in the sense of the Haar measure) the field Ks[σ] is PAC and its absolute Galois group is isomorphic to F̂ω. Mathematische Zeitschrift 224 (1997)...

متن کامل

Galois Extensions of Hilbertian Fields

We prove the following result: Theorem. Let K be a countable Hilbertian field, S a finite set of local primes of K, and e ≥ 0 an integer. Then, for almost all ∈ G(K)e, the field Ks[ ] ∩Ktot,S is PSC. Here a local prime is an equivalent class p of absolute values of K whose completion is a local field, K̂p. Then Kp = Ks ∩ K̂p and Ktot,S = T p∈S T σ∈G(K) K σ p . G(K) stands for the absolute Galois ...

متن کامل

On the Dimension of Almost Hilbertian Subspaces of Quotient Spaces

The question of the dimension of almost Hilbertian subspaces is resolved in [1] where it is shown that every Banach space E of dimension n possesses almost Hilbertian subspaces of dimension c(logn), where c is an absolute constant, and that this estimate is the best possible. When the net is spread wider to include quotient spaces and subspaces of quotient spaces we should expect to find instan...

متن کامل

On Σ-hilbertian Fields

A field K is 0-Hilbertian if K 6= ⋃ni=1 φi(K) for any collection of rational functions φi of degree at least 2, i = 1, . . . ,m. Corvaja and Zannier [CoZ] give an elementary construction for a 0-Hilbertian field that isn’t Hilbertian. There is an obvious generalization of the notion of 0-Hilbertian to g-Hilbertian. Guralnick-Thompson and Liebeck-Saxl have given a partial classification of monod...

متن کامل

On Fields of Totally S-adic Numbers

Given a finite set S of places of a number field, we prove that the field of totally S-adic algebraic numbers is not Hilbertian. The field of totally real algebraic numbers Qtr, the field of totally p-adic algebraic numbers Qtot,p, and, more generally, fields of totally S-adic algebraic numbers Qtot,S, where S is a finite set of places of Q, play an important role in number theory and Galois th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998